Recent Developments in Chlor-Alkali Technology

12th November 2024 Technology Developments & Growth Scenario in Chlor-Alkali Industry (Global and Indian Perspective) Organized by Indian Institute of Chemical Engineers New Delhi

Taisuke Nakamura

Who am I?

Career

Sales & Marketing of Chlor-Alkali electrolyser & Ion Exchange Membrane (2021.4 - Present)

Master's degree in Biotechnology, University of Tokyo

Today's topic

- 1. History of our innovation
- 2. New developments
 - MembrodeTM
 - New AcilyzerTM NC40Z
- 3. New website

1. Our history of Innovation

Asahi Kasei as unique total supplier

Asahi Kasei as unique total supplier

2. New developments

Benefit of New Developments

New Development Improvement **Easier & Faster** Membrode[™] Electrode renovation Larger **New Acilyzer**[™] effective area **NC40Z** on the same footprint

2-1. Membrode[™]

Concept of MembrodeTM

Confidential 17

Concept of MembrodeTM

Concept of MembrodeTM

Today

Future with Membrode[™]

Short period

Confidential

20

Evaluation of MembrodeTM

Evaluation of MembrodeTM

Evaluation of MembrodeTM

Confidential 22

Evaluation of MembrodeTM

Confidential 23

Summary of Membrode[™]

- Membrode

Potentially reduces the time for cathode remeshing/recoating significantly

- Cathode Membrode under evaluation in several customer's plant

- Anode Membrode under the research and development

2-2. New AcilyzerTM NC40Z (5 ft x 8 ft cell element)

New Acilyzer[™] New Conventional **NC40Z NC32Z 40 ft²** (3.4 m²) (2.7 m²) 25%up

✓ Decrease current density while maintaining the same production level

✓ Increase production value while maintaining the same current density level

Benefit from New Acilyzer[™] NC40Z (3.4m²)

Benefit from New Acilyzer[™] NC40Z (3.4m²)

Performance comparison table

Case1 Maintain production volume; P·C reduction of approx. 70 kWh/t-NaOH
Case2 Maintain current density; Production volume increase of approx. 25%

	NC32Z-Σ Conventional	NC40Z-Σ New Case1	NC40Z-Σ New Case2
Cell size	4feet×8feet	5feet×8feet	5feet×8feet
Effective area for each cell (m ²)	2.7	3.4	3.4
Current density (kA/m ²)	6.0	4.8	6.0
Power consumption (kWh/t-NaOH)	-	-70	Same
Production volume	-	-	25% up
P•C reduction of 70 (kWh/t-NaOH) or 25% increase of production volume			

*Representative value. Not guaranteed.

Benefit from New Acilyzer[™] NC40Z (3.4m²)

Prevention of CE decline with lowering C.D.

Improved CE stability against impurities with lower current density

Confidential 31

Mechanism of CE decrease by impurity

Mechanism of CE decrease by impurity

High current density

Smaller decrease in CE

Mechanism of CE decrease by impurity

Lower C.D.

High density accumulation of impurity at film/coating interface

Lower density accumulation of Impurity at wide range

It is possible to reduce membrane degradation by impurities with keeping production volume by NC40Z

Benefit of New Developments

3. New website

Recent activity – New website

https://chlor-alkali.asahi-kasei.co.jp/en/

What' New?

- New branding design
- Membership system
- Introduction Movie
- Document download
- Knowledge Hub

What's Knowledge Hub?

What's feature?

- Reduce cause identification time
- Prevent anomaly escalation
- Implement mechanism-based solutions
- Streamline internal reporting

Recent activity – New website

Knowledge Hub image

Search for Symptoms

Symptom transition chart

Select Relevant Symptoms from Options

Contents

Creating for Tomorrow